Ergodic Billiards That Are Not Quantum Unique Ergodic

نویسنده

  • ANDREW HASSELL
چکیده

Partially rectangular domains are compact two-dimensional Riemannian manifolds X, either closed or with boundary, that contain a flat rectangle or cylinder. In this paper we are interested in partially rectangular domains with ergodic billiard flow; examples are the Bunimovich stadium, the Sinai billiard or Donnelly surfaces. We consider a one-parameter family Xt of such domains parametrized by the aspect ratio t of their rectangular part. There is convincing theoretical and numerical evidence that the Laplacian on Xt with Dirichlet or Neumann boundary conditions is not quantum unique ergodic (QUE). We prove that this is true for all t ∈ [1, 2] excluding, possibly, a set of Lebesgue measure zero. This yields the first examples of ergodic billiard systems proven to be non-QUE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Smooth Hamiltonian Flows Limiting to Ergodic Billiards

Suucient conditions are found so that a family of smooth Hamiltonian ows limits to a billiard ow as a parameter ! 0. This limit is proved to be C 1 near non-singular orbits and C 0 near orbits tangent to the billiard boundary. These results are used to prove that scattering (thus ergodic) billiards with tangent periodic orbits or tangent homoclinic orbits produce nearby Hamiltonian ows with ell...

متن کامل

Quantum Ergodicity of Boundary Values of Eigenfunctions

Suppose that Ω is a bounded convex domain in R whose boundary is a C manifold with corners. We prove that the boundary values (Cauchy data) of eigenfunctions of the Laplacian on Ω with various boundary conditions are quantum ergodic if the classical billiard map β on the ball bundle B(∂Ω) is ergodic. Our proof is based on the classical observation that the boundary values of an interior eigenfu...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Limited to Ergodic Bil l iards

Abs t rac t , Sufficient conditions are found so that a family of smooth Hamiltonian flows limits to a billiard flow as a parameter e --~ 0. This limit is proved to be C 1 near non-singular orbits and C o near orbits tangent to the billiard boundary. These results are used to prove that scattering (thus ergodic) billiards with tangent periodic orbits or tangent homoclinic orbits produce nearby ...

متن کامل

Proving The Ergodic Hypothesis for Billiards With Disjoint Cylindric Scatterers

In this paper we study the ergodic properties of mathematical billiards describing the uniform motion of a point in a flat torus from which finitely many, pairwise disjoint, tubular neighborhoods of translated subtori (the so called cylindric scatterers) have been removed. We prove that every such system is ergodic (actually, a Bernoulli flow), unless a simple geometric obstacle for the ergodic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008